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Gas entrainment by a liquid film falling around a stationary
Taylor bubble in a vertical tube
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Abstract

Gas entrainment by a liquid film falling around a stationary Taylor bubble in a 0.1m diameter vertical
tube is studied experimentally with the purpose of validating a model formulated in an earlier phase of our
research. According to this model for a fixed liquid velocity the gas entrainment should be proportional to
the waviness of the film (its intermittency) and the wave height and inversely proportional to the film thick-
ness. For Taylor bubble lengths ranging from 1D to 15D these film parameters have been measured with a
Laser Induced Fluorescence technique. The gas entrainment has been determined from the net gas flux into
the liquid column underneath the Taylor bubble by using data on gas re-coalescence into the rear of the
Taylor bubble. These data are available for lengths ranging from 4.5D to 9D. The model results with
the measured film characteristics compare well with the observed gas entrainment. The fact that the net
gas flux becomes constant for long Taylor bubbles, whereas the wave height still increases, warrants further
study.
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1. Introduction

Liquid–gas flow in a vertical pipe is one of the fundamental flows in the field of two-phase flow.
Depending on the flow rates of the gas and liquid, the flow patterns in this case can differ consid-
erably. Four distinct flow patterns are in general distinguished, which for increasing gas-flow rates
are bubbly flow, slug flow, churn flow and annular flow. Here we concentrate on slug flow.

Slug flow is characterised by a liquid flow in combination with a series of large axis-symmetric
bullet-shaped gas bubbles, the so-called Taylor bubbles. These bubbles occupy most of the cross-
section of the pipe and move upward much faster than the liquid. Between the Taylor bubble and
the tube wall the liquid flows downwards as a thin free-falling film (assuming that the mixture
velocity is not too high). The Taylor bubbles are separated by regions of continuous liquid phase
that contain small gas bubbles. These regions are denoted as liquid slugs. A schematic picture of a
vertical slug flow is given in Fig. 1.

Vertical slug flow is encountered in many industrial two-phase flow applications. For instance,
it occurs during oil production and in the flows occurring in various process equipment. Slug flow
can also be encountered in daily life. An example is a coffee-maker, where the slug bubbles are
used to pump the water up towards the coffee filter.
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Fig. 1. A schematic picture of one slug-cell in a vertical slug flow. A slug-cell consists of a Taylor bubble and the
following liquid slug. Qin, Qent and Qrec are the gas in-flux, entrainment and re-coalescence gas flux, respectively. Utb

and Uf are the velocity of the Taylor bubble and the film velocity. USL and USG are the superficial liquid and gas
velocity, respectively. als is the void fraction in the liquid slug and aw the gas fraction in the wake of the Taylor bubble.
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The strongly instationary flow conditions during slug flow may have a large mechanical impact
on the equipment in which this flow occurs. For industrial applications it is therefore important to
determine the conditions for which slug flow can appear and particularly to predict the void frac-
tion of the flow. For this different models have been proposed and measurements have been done
(Fernandes et al., 1983; Brauner and Barnea, 1985, Orell and Rembrandt, 1986; Fabre and Liné,
1992; Shemer and Barnea, 1989; van Hout et al., 1992). These models are based on the assumption
of a fully developed (steady) slug flow, where the Taylor bubbles and liquid slugs rise steadily and
follow each other at a constant distance. In that case we can consider the flow as a train of so-
called slug-cells, each consisting of one Taylor bubble together with the surrounding liquid film
and one successive liquid slug. Such a slug-cell is indicated in Fig. 1.

In their model, based on a description in terms of a slug cell, Fernandes et al. (1983) predict the
void fraction in the liquid slug by considering the gas fluxes into and out of the Taylor bubble.
When the liquid flows around the nose of the Taylor bubble it deforms into a film too thin to
accommodate the bubbles carried within liquid slug (assuming a low-viscous liquid). As a result
these bubbles coalesce with the nose of the Taylor bubble, which results in a gas flow rate into the
Taylor bubble, indicated as Qin in Fig. 1. At the bottom of the Taylor bubble small bubbles are
torn off due to the falling film which plunges into the liquid slug. This gas flow rate out of the
Taylor bubble is indicated as the entrainment flux, Qent in Fig. 1. A part of these entrained gas
bubbles re-coalesces back into the Taylor bubble at its trailing edge, which results in a re-coales-
cence flux Qrec. The material balance for a stationary Taylor bubble requires that
Qent ¼ Qin þ Qrec: ð1Þ

The net gas flux out of the rear of the Taylor bubble is the entrainment flux minus the re-coa-

lescence flux. For the case of a stationary Taylor bubble this net flux out of the bottom of the
Taylor bubble should, according to Eq. (1), be equal to the gas flux into the Taylor bubble,
Qin, so that
Qnet � Qent � Qrec ¼ Qin: ð2Þ
The detailed mechanisms behind entrainment and re-coalescence are not yet fully understood
(Dukler and Fabre, 1992). In particular the mechanism by which small bubbles are torn off from
the Taylor bubble, i.e. the entrainment process, remains unclear. Delfos (1996) has suggested that
the entrainment occurs due to the fact that the liquid interface at the bottom of the Taylor bubble
is not able to follow variations in thickness of the downward falling liquid film. Based on this
hypothesis he has proposed a model for the entrainment flux. This model is dependent on the
velocity of the waves on the film surface, the wave height, the film thickness and the circumference
of the tube. Given the uncertainties in the entrainment process and the role of the falling liquid
film in this process, our objective here is to measure the characteristics of this falling film and val-
idate the entrainment model according to Delfos (1996). For this purpose we developed a non-
intrusive method to measure the film thickness based on a Laser Induced Fluorescence (LIF)
technique.

The paper is organised as follows. Some theory of the entrainment model and the falling film is
explained in Section 2. The experimental set-up as well as the measurement method are described
in Section 3. The results are presented and discussed in Section 4. In the last section conclusions
are drawn.
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2. Entrainment model

Entrainment is the process of gas loss from the rear of a Taylor bubble, which results in small
gas bubbles in the liquid slug.

This entrainment process can be compared to a similar process occurring in case of a plunging
jet, i.e. a jet falling into a stationary pool of liquid. Lin and Donnely (1966) and McCarthy et al.
(1970) discuss that the disturbances on the jet surface are responsible for the air entrainment.
McKeogh and Ervine (1981) state that, in case of a turbulent jet with a very rough surface, the
whole gas layer between the most protruding surface structures is carried into the pool.

The above mentioned ideas are applied by Delfos (1996) to the case we study here, i.e. a film
surrounding the Taylor bubble. He assumes that perturbations on the falling film surface are
responsible for the air entrainment, similar to the case of turbulent plunging jets. The first step
in the entrainment process is a transition from a smooth to a rough free surface of the falling liq-
uid film along the Taylor bubble. It was observed that only after these roughnesses or waves ap-
peared on the free surface, gas entrainment increased perceptibly. This led to his conclusion:
‘‘entrainment is supposed to be caused by the fact that the free surface of the pool is not capable
of responding to the (transverse) oscillations of the incoming film’’. This process is schematically
illustrated in Fig. 2.

The main aspects of this entrainment mechanism can be described as follows. When a wave on
the film surface approaches the pool it generates a gravity wave, which propagates on the pool
surface (Fig. 2a). When the slope of the induced gravity wave is large enough and the waves
on the film surface travel fast enough, the crest of the gravity wave will contact the next wave
on the film surface and air will be enclosed (Fig. 2b).

Delfos proposed an expression for the entrainment flux based on parameters as shown in Fig. 3.
To simplify the problem, the waves on the film surface are taken sinusoidal with wavelength k and
wave height hw. The mean film thickness is hf. The mean velocity of the film is Uf and the velocity
of the waves on the surface of the film Uw. The shaded area in Fig. 3 is assumed to be the
enclosed air

(a) (b)
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Fig. 2. Entrainment mechanism at the bottom of the Taylor bubble due to distortions on the falling liquid film.



f

Tube wall

Film Taylor
bubble

λ

z

Entrained air
Rear

Wake

U f Uw

hw
h

Fig. 3. A schematic picture of the falling film with waves. The shaded area is assumed to be the entrained air.
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entrained air. The expression for the entrainment rate, assuming the whole area between the crest
of the waves is entrained, then becomes
Qent ¼ IUwhwpðD� 2hfÞ; ð3Þ
with I the intermittency factor, which is the fraction of time that disturbances occur at one point
on the free surface of the falling film. We approximate Uw by means of the wave celerity as meas-
ured by Chu (1973) and modelled by Brauner (1987). If we extrapolate their results for our case
(Re = 35 · 103), the wave celerity will be about 1.2 times the mean film velocity, thus
Uw � 1:2U f : ð4Þ
The liquid flow surrounding the Taylor bubble is assumed stationary, hence the film thickness
hf(z) relates to the average film velocity Uf(z) following from conservation of mass, i.e. the down-
ward liquid flow rate above the Taylor bubble is equal to the liquid flow rate in the falling film at
any location z downstream of the Taylor bubble nose as defined in Fig. 3:
Ql ¼
p
4
D2U l ¼

p
4
ðD2 � ½D� 2hfðzÞ�2ÞU fðzÞ; ð5Þ
where Ul is the downward liquid velocity above the stationary Taylor bubble.
For a thin film (hf � D), as is a very good assumption for z > D, we can approximate the flow

as a two-dimensional film flowing along a flat vertical plate. Then the liquid film velocity, using
Eq. (5), linearises to
U fðzÞ ¼
DU l

4hfðzÞ
: ð6Þ
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Combining Eqs. (3)–(6) and again assuming that hf � D, we obtain the following expression
for the entrainment flux
Fig. 4
a RO
Qent ¼ 1:2QlI
hw
hf

: ð7Þ
To verify this modelled entrainment flux, we thus have to measure the intermittency factor,
the mean film velocity and the average wave height of the waves on the liquid film. The liquid flux,
Ql, is a known and fixed parameter during the measurements.
3. Experiment

3.1. Experimental set-up

The experimental set-up that we have used is described in Delfos et al. (2001b); more details can
be found in Delfos (1996). Here we will summarise only the main characteristics. A schematic lay-
out of the experimental set-up is illustrated in Fig. 4. It consists of a vertical, cylindrical pipe made
. A schematic drawing of the experimental set-up. The air inlet, Qin at the top of the Taylor bubble is by means of
TA flow meter. P and T are measuring points of the pressure and the temperature respectively.
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out of perspex with an inner diameter Di of 100mm. In this tube a Taylor bubble is generated by
continuous injection of air, Qin, through a small tube with tube diameter Dt of 7mm. At the end of
this tube a spherical cap is attached. The purpose of this cap is to stabilise the bubble in the centre
of the main vertical pipe. The radius of curvature of this cap, Rn = 36mm, is the same as that of
the nose of a theoretical Taylor bubble as found by Dumitrescu (1943).

The bubble is kept at a fixed position by a constant water flow, Ql, moving downward with a
liquid velocity Ul. This liquid velocity is equal to the rise velocity of a Taylor bubble in a stagnant
liquid, U tb ¼ 0:35

ffiffiffiffiffiffi
gD

p
(Dumitrescu, 1943). Above the Taylor bubble a flow straightener (honey-

comb) is placed to obtain a uniform velocity profile, and reduce the turbulence in the flow
approaching the Taylor bubble. Such a profile is representative for flow conditions encountered
by a rising Taylor bubble in a stagnant liquid. Measured velocity profiles were presented in Delfos
et al. (2001b). The part of the pipe where the Taylor bubble can be observed is called the test sec-
tion. This section is enclosed by a rectangular water-filled box to provide a good optical access.

3.2. Entrainment flux measurement

The entrainment flux, using Eq. (2), can be expressed as follows
Qent ¼ Qin þ Qrec ¼ Qnet þ Qrec: ð8Þ

To measure the entrainment flux we thus have to measure the gas flow rate into the Taylor

bubble and the re-coalescence flux back into the Taylor bubble.
The gas flow rate, Qin, is measured directly with a ROTA-meter as described in Section 3.1. The

re-coalescence flux is measured indirectly with a helium injection technique. This technique is de-
scribed by Delfos et al. (2001a) and in more detail by Kockx (1999), and can be summarised as
follows: To the unknown entrainment gas flow rate Qent, a known flow rate of helium QHe is
added, by injecting helium bubbles of similar size as the entrained bubbles in the wake of the Tay-
lor bubble. The proper location to inject the helium bubbles into the wake is described in the
paper.

If re-coalescence occurs, helium will enter the Taylor bubble and in case of stationary flow con-
ditions, a constant helium concentration will be established inside the Taylor bubble. By a sample-
and-reinjection technique, the helium concentration inside the Taylor bubble, CTB, is monitored
continuously. The re-coalescence probability Krec, i.e. the probability that a small gas bubble,
after being entrained, coalesces back into the Taylor bubble, is thus a directly measureable quan-
tity: Krec = Qrec/Qent = CTB Æ (Qin + QHe)/QHe. Then, from the mass balance follows that Qent =
Qin/(1 � K).

3.3. Experimental technique to measure the film thickness

To measure the instantaneous liquid film thickness at a given location we need a one-point
measurement method, which is able to measure the film thickness continuously with a high sample
frequency. Several methods are available to perform such measurements, with as example conduc-
tive or needle contact probes. The disadvantage of these techniques is that the probes disturb the
flow and the needle point probe measurement is relatively slow. A disturbance of the film flow
should be avoided, because it can change the characteristics of the film. Furthermore, the film
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thickness in our case has to be measured at various axial positions along the Taylor bubble. This is
more complicated to carry out with probes, because many holes in the wall are needed. Another
method to measure the film thickness is a light absorption method. However, this requires a detec-
tor inside the Taylor bubble, which moreover can transverse in axial direction. This is very com-
plicated to realise in our experimental set-up.

As alternative to the methods discussed above, we have chosen a Laser Induced Fluorescence
technique (LIF) proposed by Hewitt et al. (1964). The advantage of this technique is that it is non-
intrusive and thus does not disturb the flow. In the LIF method that we have applied, we can
measure the film thickness with a laser set-up and a detector both at the same side of the tube.
A detector inside the Taylor bubble is thus not needed. Furthermore, the axial traversing of this
optical system along the tube wall is relatively straightforward. Our method also allows instanta-
neous observation of the film thickness at a given position. From these measurements we can ob-
tain statistical information, such as the mean and the variance of the film thickness.

The principle of this LIF-technique is illustrated in Fig. 5. The water in the set-up contains a
constant concentration of sodium fluorescein, Uranine AP, [C20H14Na2O5]. A beam of blue light
(kL = 488nm and diameter beam = 2mm) from an Argon-ion laser is transmitted into the liquid
film via a small circular mirror with a diameter of 3mm. The power of this laser is 35mW. The dye
excited by the incident beam emits a green fluorescence (kF = 515nm). This green light is observed
by an optical system which is positioned at the same side of the vertical pipe as the incoming blue
laser light. After passing a positive lens, the green fluorescence is first separated from any reflected
blue light by means of a bandpass filter (XM-535 Corion). This filter reduces the blue light inten-
sity by a factor of 107 and has a peak transmittance of green light of at least 60%. Subsequently,
the fluorescence is focused on a photo-diode by means of a positive second lens. The signal of the
photo-diode Vph, which in our case is amplified with a factor 103, is proportional to the intensity
of the fluorescent light, If. The proportional constant, Krec, depends on the detector properties and
the fraction of light captured by the detector.
Photo-diode

Green fluorescence light
Reflected blue laser light
Blue laser light

Tube wall

Laserlight

Lens 1

Band filter

Lens 2

Liquid film

x 2x 3x1

Fig. 5. Schematic figure of film thickness measurement in our experimental set-up with the Laser Induced Fluorescence
technique. With x1 = 36mm, x2 = 32mm and x3 = 16mm.
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The intensity of fluorescence depends on the intensity of the incoming blue light I0, the concen-
tration of the dye C, the film thickness hf (i.e. the light path through the fluorescence solution) and
the properties of the detector (Guilbault, 1973). The relation for the photo-diode signal reads
V ph ¼ KI f ¼ KUI0ð1� e��Chf Þ; ð9Þ

where U is the quantum efficiency (0.92 for Uranine AP) and � is the extinction coefficient. During
the experiment the concentration of the fluorescent dye and the intensity of the incoming laser
light are kept constant. The measured intensity of fluorescence can thus directly be interpreted
as a measure for the film thickness. At intermediate concentrations, the fluorescence light is not
evenly distributed along the light beam (the exponential term in Eq. (9)), also called the �inner-cell�
effect. Its explanation is that the portion of fluorescence solution nearest to the light source ab-
sorbs radiation so that less is available for the rest of the solution. For sufficiently dilute solutions
and small film thicknesses this effect gets small and (9) can be simplified to the following
relationship
V ph ¼ KI f � KUI0�Chf �
1

2
KUI0�2C

2h2f þOðh3f Þ: ð10Þ
The dye concentration in our case is C = 1 · 10�3g l�1. It is chosen such that the fluorescence
intensity is sufficiently high for the photo-diode to detect but sufficiently low for the inner-cell ef-
fect to be not too strong. The laser and the optics are mounted on a traversing system connected
to the test-section, such that we can measure at different positions along the Taylor bubble. At
every measuring point the intensity of fluorescence as measured by the photo diode is sampled
during 15s with a sample frequency of 4000Hz.
3.3.1. Calibration
The constant K in the relation between the measured voltage and the film thickness as given in

Eq. (10) must be determined by a separate calibration in which the intensity of fluorescence is
determined for a set of given film thicknesses. For this we have designed a special calibration
set-up (Kockx, 1999), which is shown schematically in Fig. 6.

It consists of a rectangular container, made out of perspex, which is filled with the fluorescent
solution. In this container we put a perspex slab, which is shaped more or less in the form of a
staircase upside-down, such that between the bottom of the slab and the bottom of the container
a set of spaces with a given height is created. At the positions of the well-defined spaces holes are
drilled in the staircase shaped slab. These holes are closed on the bottom side with thin glass plates
(dg = 0.2mm). These plates simulate the free surface (water–air) in the experiment. The water–
glass–air surface reflects 2.6% more blue light than the water–air surface. At the end of this sub-
section we discuss how we correct for this extra reflection. Between the glass plates and the bottom
of the container a range of liquid layers with well-defined thicknesses between 1.0 and 6.5mm is
created. The expected film thickness is 2.8mm therefore a range of thickness around this value is
chosen. The bottom of the container consists of two perspex walls with a space in between, which
is filled with water. This set-up is chosen to imitate the square optical box which surrounds the
tube in the experiment. The distances between the optics, the laser and the tube wall is taken
the same as in the experiment. During the calibration the fluorescein solution is circulated by a
pump to prevent photo-decomposition of the dye.



6.5 mm

Perspex beam

Blue laser light

film height

pumped
around

Fluorescent solution

water

Thin glass plate

Fig. 6. The calibration set-up.

10 J.P. Kockx et al. / International Journal of Multiphase Flow 31 (2005) 1–24
The fluorescence intensity is now measured for each liquid layer in the calibration cell. During
the calibration measurement the following problem was encountered. The voltage, measured by
the photo-diode, was found to fluctuate, which could be traced back to the laser. The laser itself
fluctuates with 50Hz and its harmonics. The intensity of this ripple is 2% of the total measured
intensity at a given film height. These fluctuations are digitally filtered out when we determine
wave height, intermittency and the power spectrum of the film thickness.

In Fig. 7 we show an example of a calibration curve. The measured data are fitted with a second
order polynomial (using standard weighted least-squares fitting routines), which agrees with Eq.
(10). The inaccuracy in the thickness of the liquid layer is approximately 0.02mm and the error in
the curve fit is 0.5%. If we however perform three separate calibrations in a row (in which each
calibration is separately aligned) the error due to three different curve fits becomes 3%, which
is also the final error in the calibration.
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Fig. 7. The calibration curve for the LIF-technique, which gives the relation between film thickness and voltage of the
photo-diode (i.e. the fluorescence intensity).
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We now have a calibration curve, which is not yet corrected for the extra reflection of blue light
at the glass plates. The total intensity of blue laser light, if we take into account the reflection at
the glass plates follows as
I l ¼
Z hf

0

I0e��Cxdxþ
Z hf

0

agI0e��Chf e�Cx dx; ð11Þ

¼ I0ð1� e��Chf Þð1þ age
��Chf Þ; ð12Þ

� I0�Cð1þ agÞhf þ
1

2
I0�2C

2ð1þ 3agÞh2f þOðh3f Þ; ð13Þ
in which ag is the total reflection coefficient of blue light at the water–glass–air surface. This results
in the following fluorescence intensity measured by the photo-diode
V ph ¼ kphkAUI l; ð14Þ
¼ Að1þ agÞhf þ Bð1þ 3agÞh2f ; ð15Þ
in which A and B are unknown constants. To determine A and B we combine Eq. (15) and the
second order polynomial ðV ph ¼ c1hf þ c2h

2
f Þ fitted through the calibration data. We can now

determine the Vph in case of our experiment (only reflection at the water–air surface) by substitut-
ing the reflection coefficient of the water–air surface, aa, in Eq. (15). To come to an expression for
the film thickness as function of the photo-diode signal, hf(Vph), we determine the roots of the cor-
rected second order polynomial.

3.4. Determination of intermittency and wave height

Here we will discuss the procedure to determine the intermittency factor. First we need a
method to recognise the undulations present in the instantaneous film thickness signal. This is
done in the following way. We calculate the standard deviation over a small time interval, dt,
around each data point. In this way we get a kind of contour of the original film thickness signal,
as shown in Fig. 8, which we call the local standard deviation signal. We now state that if the local
standard deviation signal exceeds a certain threshold value, undulations are present on the film
surface. The intermittency factor is then defined as the ratio between the time that the local stand-
ard deviation signal exceeds the threshold value (undulation time), Tu, and the total time interval
of the time series, Ttot (see Fig. 8).

Now that we know the procedure to determine the intermittency factor, we have to define the
threshold value and the time interval, dt, over which the local standard deviation is calculated.

In our experiment we have chosen for a time interval, dt, of 2ms (eight samples). This time
interval enables us to detect undulations with a frequency of maximum 500Hz. This frequency
is about the highest frequency present in the power spectrum of the film thickness signal at
Ltb > 90cm, i.e. Taylor bubble lengths where we observed a rough film surface (Kockx, 1999).
A larger dt would not give us information about undulations with high frequencies (of order
100Hz) and a smaller dt would introduce too much noise.

The threshold value, in other words the noise r0, is determined in the following way. We cal-
culate the intermittency with the local standard deviation signal for all kinds of threshold values.
In Fig. 9 we show such a �threshold� graph for three different Taylor bubble lengths, Ltb = 25, 30
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and 60cm. We observe (by eye) that the Taylor bubble surface is �certainly� smooth at a Taylor
bubble length smaller than 30cm, thus the intermittency at these lengths has to be smaller than
(by our definition) 1% (0.01). It then follows, that the threshold value (noise) has to be 0.04V
to satisfy the 1% criterion for short Taylor bubbles. The intermittency factor can now be calcu-
lated for all instantaneous film thickness measurements at different Ltb, with dt = 2ms and a
threshold value of 0.04V.

Another parameter needed to calculate the modelled entrainment flux is the wave height of the
disturbances on the surface of the falling film. The standard deviation of the interface distur-
bances that are assumed to contribute to the entrainment, rw, is obtained from the standard devi-
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ation of the filtered film thickness signal rtot corrected for intermittency I and the threshold value
r0. This leads to the following expression
r2
w ¼ r2

tot � r2
0

I
: ð16Þ
If we assume that the disturbances are sinusoidal waves, the wave height becomes
hw �
ffiffiffi
2

p
rw: ð17Þ
4. Results

4.1. Measured entrainment flux

The entrainment flux is measured as described in Section 3.2. First we show the measurement
results of net gas flux out of the Taylor bubble, Qnet (equal to the gas flow rate into the Taylor
bubble, Qin) as a function of Taylor bubble length for stationary conditions. The results, together
with the earlier measurements presented in Delfos et al. (2001b), are shown in Fig. 10. The figure
shows that there is good agreement, the set-up thus giving consistent results. We see in this figure
that Qnet is negligible till a Taylor bubble length of about 40 cm (4D), this implies that the entrain-
ment flux is equal to the re-coalescence flux or that both fluxes are zero. After this point Qnet in-
creases more or less linearly with increasing Taylor bubble length until Ltb = 100cm (10D). The
net gas flux out then reaches a maximum of 0.375 l s�1 at about Ltb = 110cm (11D) and after this
length Qnet decreases slowly to a value of about 0.35 l s�1 at Ltb = 165cm (16.5D).

The re-coalescence flux measured by Delfos et al. (2001a) is shown in Fig. 11. We see that the
re-coalescence flux is small at Ltb = 51cm (5.1D) and increases to 0.28 ls�1 at Ltb = 91cm (9.1D).
This is related to the fact that in this range of film lengths, the re-coalsecence probability Krec rises
from about 10% for short bubbles to nearly 50% for the largest stable Taylor bubbles.

The measured entrainment flux (the sum of net gas flux and re-coalescence flux) as shown in
Fig. 11 is also small at Ltb = 51cm (5.1D) and increases to a value of 0.60 ls�1 at Ltb = 91cm
Delfos (2001)
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(9.1D). Unfortunately we do not have separate measurements for the re-coalescence flux (and thus
the entrainment flux) beyond Ltb > 91cm (9.1D). The net gas flux out of the rear of the Taylor
bubble (see Fig. 11), however becomes more or less constant at Ltb > 100cm (10D). This means
that the difference between the entrainment and re-coalescence flux has become constant at
Ltb > 100cm (10D).

Measurements on stationary bubbles in a tube were presented by Su (1995), Bacon et al. (1995)
and Riiser et al. (1992). However, none of these authors could take into account the re-coales-
cence flux. Therefore, their entrainment flux measurements are actually measurements of the
net gas flux out of the Taylor bubble. Although qualitatively, these authors find characteristics
of the net gas loss similar to our results, we will not further consider these for a quantitative com-
parison on the entrainment flux, since information on both the film characteristics as well as on
the coalescence in their experiments is too limited.

4.2. Film thickness

In Fig. 12 we show the measured mean film thickness, hf, as a function of the distance along a
Taylor bubble of 150 cm (15D) length at Qin = 0.35 ls�1. The measurement errors as estimated
from the calibration inaccuracy are indicated by error bars. The measurements start at a distance
of 10cm (1D) below the nose of the Taylor bubble. More near the bubble nose the 2-D film
approximation is not valid any more, and also the film thickness here is outside our calibration
range. Fig. 12 shows that the film thickness decreases till 2.6mm at a distance of 0.8–0.9m (8–
9D). Beyond that region the thickness increases gradually to reach a value of about 2.8mm for
a distance larger than 120cm (12D). This film thickness agrees with the empirical correlation
by Karapantsios and Karabelas (1995), as given in Eq. (A.5), for a fully developed turbulent
free-falling film at our Re = 3.5 · 104. It also agrees reasonably well with measurements by Su
(1995), who found a mean thickness of 3mm for the liquid film along a Taylor bubble similar
to ours at the same Re.

Mean film thickness measurements done with the same liquid flow rate but with other gas in-
fluxes (Qin = 0�0.43 ls�1), in other words different Taylor bubble lengths, gave the same results as
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the measurements shown in Fig. 12. Thus the development of film thickness is independent of the
gas flux into the Taylor bubble in our range of gas in-fluxes, as could be expected from the neg-
ligably small stresses at the gas-liquid interface. Therefore we will further assume that the distance
z along the Taylor bubble of 150cm (15D) is equivalent to different Taylor bubble lengths and
refer to this distance with Ltb.

In Fig. 12 we also show three models for the wall film thickness, as they are developed in
Appendix A. The first (broken line) is found from a frictionless free falling film, as derived from
potential flow theory. The second curve (dotted) is found from a film that is turbulent wavy from
the beginning. The third curve (full line) is based on the more elaborate transition model, in which
the film starts with a laminar boundary layer at the tube wall, but on its way undergoes transition
to a turbulent wavy flow. Here for the intermittency, i.e. the fraction of time that the film is tur-
bulent wavy, we have used the measured intermittency as it will be discussed in the next sub-
section.

The figure clearly shows that the measurements agree relatively well with the transition model,
whereas both others are relatively far off. The minimum in film thickness as it is measured now
can be understood from the transition model: There it is assumed that before the transition to
a wavy-interface flow occurs the film is still laminar. Because the friction then is very low, the film
tends to be stretched very thin. When transition occurs, the friction increases considerably, hence
the film thickness increases again. Beyond Ltb > 1.2m (12D) when film transition has completed,
the film reaches both in model and in experiment a more or less constant thickness of
2.8 ± 0.2mm. From these results, we can conclude that the model with a laminar boundary layer
and a gradual transition gives the best description of the film thickness development.

4.3. Intermittency distribution and wave height

The intermittency factor can be determined from the instantaneous film thickness signal by esti-
mating the fraction of time that the signal RMS exceeds a threshold value. Fig. 13 shows the
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measurements of this intermittency factor, including error bars, along the Taylor bubble, at
USL = 0.35ms�1. We see that the intermittency is very low until the bubble reaches a length of
45cm (4.5D), which is equal to the onset of entrainment discussed in Section 4.1. Beyond this on-
set of entrainment the intermittency factor grows rapidly to a value of 1 at a Taylor bubble length
of 1m (10D).

In the same figure the intermittency of the surface of the falling film is compared with a model
for the intermittency distribution in a boundary layer during transition. In this latter case the
intermittency is equal to the percentage of time that turbulent spots occur in the boundary layer
(Johnson and Fashifar, 1994). Based on this model their empirical intermittency distribution of
turbulent spots reads
I ¼ 1� expð�0:0941n3Þ; ð18Þ
with n ¼ Lx � Lon

LI¼0:75 � LI¼0:25

: ð19Þ
In this expression the onset length, Lon, LI=0.75 and LI=0.25, were determined from a fit to our
intermittency data. The values are respectively: 46.2, 85.0 and 67.4cm. The result is shown as a
curve in Fig. 13. The model of Johnson and Fashifar (1994) fits well with our measurements.
We can conclude that the increase of intermittency (percentage of waves) on the surface of the
falling film shows a similar behaviour as the growth of turbulent spots in a boundary layer.

In Fig. 14 we show the results for hw along the Taylor bubble. It can be seen that the mean wave
height starts with a value of about 0.8mm and increases to a value of 1.7mm at Ltb = 1.5 m (15D).
The latter value compares reasonably well with the mean wave height found by Chu (1973) and
Zabaras (1985) if we extrapolate their results to our Reynolds number of 3.5 · 104.

The characteristics of the waves can be found from the spectrum of the instantaneous film
thickness. The power spectrum of the film thickness signal is shown in Fig. 15 for four different
distances along the Taylor bubble: 15, 55, 95 and 137cm (1.5D, 5.5D, 9.5D and 13.7D), respec-
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tively. It follows that for the small distances, i.e. Ltb = 15cm (1.5D), the energy of the waves is
low. There is only a small peak at about 15Hz. Thereafter the energy of the waves increases rap-
idly with increasing distance along the Taylor bubble. At higher Taylor bubble lengths two max-
ima are found in the spectrum. The first maximum lies at about 15Hz and the second at about
200Hz. At Ltb > 1m (10D) the spectra are more or less similar. At these Taylor bubble lengths
the intermittency is 1 and thus the whole surface can be considered as rough.

The frequency of the long waves agrees more or less with the frequency of 12Hz for roll-waves,
found by Chu (1973) and Zabaras (1985), for free falling film at Reynolds numbers between 200–
8000. We can conclude that the long waves present in our measurements behave as roll-waves. In
our case, however, there are also short waves present on top of the long wave. These short waves
are probably caused by the turbulent eddies in the film. We can give a rough estimate of the wave
lengths by means of the frequency and the wave velocity. The wave velocity is determined with
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Uf = 3ms�1 (the average film velocity at hf = 2.8mm) using Eq. (4). Ignoring aliasing due to wave
vector orientation, this leads to a wave length of about klw � 24cm at f = 15Hz for the long waves
and ksw � 1.5cm at f = 200Hz for the short waves.

4.4. Entrainment model results

The modelled entrainment flux, as found by substituting the intermittency, the wave height, the
film thickness and the constant liquid flowrate in Eq. (7), is shown in Fig. 16. In this figure we can
see that the modelled entrainment flux is zero till a length of 0.45m (4.5D), the so-called �onset of
entrainment point� and then the entrainment flux increases till a value of about 1.5 l s�1 at
Ltb = 1.5m (15D). At Ltb > 1.2m (12D) the intermittency, film thickness and mean film velocity
have become constant. Thus after this length the entrainment flux only increases due to the
increasing wave height.

In the same figure we compare the modelled entrainment flux with the measured entrainment
flux (see Fig. 11). It can be seen that the modelled entrainment flux agrees very well with the meas-
ured entrainment flux till a length of 1m (10D). After this length we do not have entrainment flux
measurements. This good agreement gives confidence in the entrainment flux proposed by Delfos
(1996). According to the model the gas entrainment keeps on increasing when the Taylor bubble
becomes longer than the length of 10D at which the net gas flux becomes constant (as shown in
Fig. 10). This is due to the fact that the wave height keeps on increasing when the Taylor bubble
increases in length (Fig. 14). Apparently, the additional gas entrained at these conditions com-
pletely re-coalesces into the rear of the Taylor bubble. Measurements of the re-coalescence prob-
ability in the wake show that it strongly increases with increasing gas volume fraction in the wake:
At a Taylor bubble length of 91cm (9.1D), already 45% of the entrained air re-coalesces back into
the Taylor bubble. If this result is extrapolated to even higher entrainment rates, one may expect a
further increase of re-coalescence probability, which eventually may lead to a net gas loss that de-
creases with increasing gas entrainment rate. Unfortunately, the measuring technique as applied
in Delfos et al. (2001a) was not applicable at higher Taylor bubble lengths.
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Such mechanisms are speculative however. Therefore to answer these questions, more data on
the film evolution at an even higher Ltb as well as re-coalescence data at higher wake void frac-
tions are needed. Furthermore, more advanced measuring techniques suitable for use in the opti-
cally dense wake region might give more insight in the physics of the re-coalescence probability.
5. Conclusions

For air/water flow in a vertical tube with a diameter D of 0.1m we have studied experimentally
the gas entrainment at the rear of a Taylor bubble, that was held stationary. Around this Taylor
bubble water is flowing in a thin film at a fixed rate. According to a model published earlier the
gas entrainment at these conditions depends on the liquid film characteristics. It is proportional to
the waviness of the film (its intermittency) and the wave height and inversely proportional to the
film thickness. We have measured these film characteristics with a Laser Induced Fluorescence
technique for Taylor bubble lengths ranging from 4D to 15D. The gas entrainment at the rear
of the Taylor Bubble was determined from the net gas flux into the liquid column underneath
it and the rate of entrained gas that re-coalesces. Due to limitations in the latter measuring tech-
nique, these measurements only span a Taylor bubble range from 1D to 9D. The results can be
summarised as follows:

• The film intermittency becomes non-zero at a Taylor bubble length of 4.5D and reaches its
maximum value of 1 at Ltb = 10D.

• The film thickness reaches a constant value of 2.8mm at Ltb = 12D.
• The height of waves at the film surface increases as the Taylor bubble length increases.

Although the constant average film thickness for Ltb > 12D suggests a fully developed film flow,
the further increasing wave height suggests that a fully developed state is still not reached at
Ltb = 15D.

• Gas entrainment starts to occur at Ltb = 4.5D, i.e. when the first waves appear. For values of
the Taylor bubble lengths up to 9D the measurements compare very well with the model results,
when measured film data are subsituted in the equation. For Ltb = 9D–15D the model indicates
that the gas entrainment keeps on increasing with Taylor bubble length.

• The net gas flux into the liquid column underneath the Taylor bubble is also an increasing func-
tion of its length. However it reaches a constant value at Ltb = 10D. Apparently beyond that
point any additional entrained gas completely re-coalesces with the Taylor bubble. A study
of the reason why this occurs will require more data of the kind we have presented here and
in Delfos et al. (2001a), as well as more powerful diagnostic tools, capable of being used in
the high void fraction wake region.
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Appendix A

Here we will briefly describe a model for the thickness of the liquid film surrounding the Taylor
bubble, i.e. the liquid film flowing down along the tube wall. In our laboratory experiment, the
Taylor bubble is fixed at a constant axial position. Thus in the laboratory reference frame, the film
flow is stationary downward along a non-moving wall. This implies that the shear stress inside the
film is dominated by the wall induced stress, whereas the shear stress at the water–air interface can
be neglected. We can also assume the flow to be stationary, i.e. except for waves on the interface
the film height is constant in time. Then the film thickness hf(z) relates to the average film velocity
Uf(z) following from conservation of mass, i.e. the downward liquid flow rate above the Taylor
bubble is equal to the liquid flow rate in the falling film at any location z downstream of the Tay-
lor bubble nose as defined in Fig. 17:
Ql ¼
p
4
D2U l ¼

p
4
ðD2 � ½D� 2hfðzÞ�2ÞU fðzÞ; ðA:1Þ
where Ul is the downward liquid velocity above the stationary Taylor bubble. Thus we find for the
film thickness hf(z):
hfðzÞ ¼
D
2

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� U l

U fðzÞ

s !
: ðA:2Þ
For a thin film (hf � D), as is a very good assumption for z > D, we can approximate the flow
as a two-dimensional film flowing along a flat vertical plate. Then the film thickness linearises to:
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Fig. 17. Boundary layer developing in the falling liquid film along the tube wall.
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hfðzÞ �
DU l

4U fðzÞ
; ðA:3Þ
which we will use further on. In order of appearance, we will now describe (i) the final stage, (ii)
the initial stage, and (iii) the intermediate stage of the film flow.

(i) After development effects at the inlet, a liquid film flow will eventually reach a fully devel-
oped state. The state depends on the hydraulic Reynolds number, ReH = 4Uf(z)h(z)/m = UlD/m
where the mass balance was used. Since we only consider relatively high values (in the experiment
ReH � 3.5 · 104), the final state of our film is highly turbulent, with large amplitude roll waves
(Karapantsios and Karabelas, 1995; Brauner, 1987). For the present modelling, we are only inter-
ested in the mean film thickness, hftw. For flow over a smooth wall, we find applying the Blasius
friction factor,
hf ¼ 0:135
m2

g

� �1
3

Re
7
12: ðA:4Þ
For our case this leads to a thickness of the equilibrium turbulent film equal to 2.8mm. If we
use the correlation by Karapantsios and Karabelas (1995), who obtained data in the range of
ReH = (500–13,000):
hftw ¼ 0:214
m2

g

� �1
3

Re0:538; ðA:5Þ
which gives 2.8mm as well, which is further confirmed within 10% by older data (Belkin et al.,
1959) for ReH = (5000–30,000). From the mean film thickness, we easily find a fully developed
film velocity, UfFD from the mass balance.

(ii) Compared to the final thickness of the film of a few mm, the initial thickness of 50mm (half
the tube diameter) is much larger. Thus we can expect that the film is far from fully developed near
the Taylor bubble nose. Since we consider high Reynolds number film flow only, we can first con-
sider the flow as inviscid, i.e. frictionless. Then applying Bernoulli�s law to the free surface stream-
line starting from the stagnation point at the nose of the bubble, we find for the interface velocity
of the film, Ui:
U i ¼
ffiffiffiffiffiffiffi
2gz

p
: ðA:6Þ
In the inviscid flow, the velocity profile in the film quickly gets flat after the curved part near the
bubble nose, i.e. for z > D. Thus the inviscid film thickness hfi(z) is found from the mass balance:
hfiðzÞ ¼
DU l

4
ffiffiffiffiffiffiffi
2gz

p : ðA:7Þ
Thus we see that the film quickly gets thinner. At 1D, it has already shrunk to a mere 6mm. The
state of the flow, either laminar or turbulent, does not have any influence on this initial phase.

(iii) Let us now consider the change from the initial free-fall to the finally fully developed tur-
bulent wavy flow. If we assume the flow to be turbulent from the beginning, we can take the fric-
tion factor of the film as a constant, in which the equation of motion for the film can be written as
(Delfos, 1996):
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d

dz
1

2
U 2

f ¼ g 1� U f

U fFD

� �3
 !

; ðA:8Þ
where the inverse function z(Uf) can be solved analytically:
z UFD
f

� �
g=U 2

fFD ¼ 1

6
ln 1þ UFD

f þ UFD
f

2
� �

� 1

3
lnð1� UFD

f Þ � 1ffiffiffi
3

p a tan 1þ 2UFD
f =

ffiffiffi
3

p� �
� p=6

� �
ðA:9Þ
with UFD
f ¼ U f=U fFD the non-dimensional film velocity. The resulting film thickness is plotted in

Fig. 12.
In Section 4.2 we show that this �fully turbulent� model highly underestimates the thinning of

the film. This can be understood from the fact that the film flow is more likely to be laminar from
the beginning: not only is turbulence in the flow upstream of the bubble nose reduced by a hon-
eycomb flow straightener, but also in the accelerational phase of the film, turbulence is further
reduced or even suppressed (Loehrke and Nagib, 1976).Therefore, it is more likely that at the tube
wall a laminar boundary layer will form itself. In principle, this boundary layer will develop as
soon as the liquid flow leaves the honey-comb section. A full treatment of the boundary layer
from this point on is yet not that relevant, while the momentum of the whole flow (including that
of the boundary layer) is rather low before the nose part of the bubble is reached. Only in the
strongly accelerating phase after the bubble nose passage, stresses in this layer are important.
The development of the boundary-layer thickness d(z) and its displacement thickness d*(z) for
the case of a two-dimensional laminar flow with constant acceleration g can be solved straightfor-
ward using Pohlhausen�s method (Delfos, 1996):
dðzÞ ¼ 3:41

ffiffiffiffiffiffiffiffiffiffiffiffi
m
ffiffiffiffiffi
z
2g

rs
; d�ðzÞ � 0:252d ðA:10Þ
with m the kinematic viscosity of the liquid. The accelerating boundary layer causes a non-uniform
velocity profile within the film. As a consequence we have to correct the free-falling film thickness
(A.2) by adding to hfi the displacement thickness d* due to the presence of the boundary layer.
Thus we find for the laminar film thickness hfL(z):
hfLðzÞ ¼ hfiðzÞ þ d�ðzÞ ¼ DU lffiffiffiffiffiffiffi
2gz

p þ 0:859

ffiffiffiffiffiffiffiffiffiffiffiffi
m
ffiffiffiffiffi
z
2g

rs
: ðA:11Þ
The boundary layer growth will proceed until the shear stress is fully developed throughout the
whole film height, i.e. when d(z) approaches hfi(z), or until the film flow has become unstable. It
can easily be shown that it takes several meters of film drop before the equilibrium film thickness
for laminar flow (Nusselt, 1916) is reached. Film flow instability can occur either by transition to a
turbulent boundary layer, or to an unstable wavy film interface. In our experiment, we observed
the film surface to start having wavy patches already some 0.5m below the Taylor bubble nose.
We can only guess that this wavy interface is initiated by instabilities in the boundary layer, but
cannot prove this. Any way, after such a transition the laminar model above is not sufficient any
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more. Therefore, we introduce the intermittency I(z), i.e. the fraction of time (or the fraction of
tube circumference) at a certain position z that the film is wavy. We now model the average film
thickness hhf(z)iby simply averaging:
hhfðzÞi ¼ ð1� IðzÞÞhfLðzÞ þ IðzÞhfFD; ðA:12Þ

where the intermittency is determined from the experiments, as described in Section 4.3. In Section
4.2 we show that this more elaborate film model reasonably well describes the evolution of film
thickness.
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